2000 character limit reached
A Survey of Explainable Reinforcement Learning (2202.08434v1)
Published 17 Feb 2022 in cs.LG
Abstract: Explainable reinforcement learning (XRL) is an emerging subfield of explainable machine learning that has attracted considerable attention in recent years. The goal of XRL is to elucidate the decision-making process of learning agents in sequential decision-making settings. In this survey, we propose a novel taxonomy for organizing the XRL literature that prioritizes the RL setting. We overview techniques according to this taxonomy. We point out gaps in the literature, which we use to motivate and outline a roadmap for future work.
- Stephanie Milani (23 papers)
- Nicholay Topin (17 papers)
- Manuela Veloso (105 papers)
- Fei Fang (103 papers)