Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Enabled Few-Shot Load Forecasting (2202.07939v1)

Published 16 Feb 2022 in cs.LG, eess.SP, and stat.AP

Abstract: While the advanced machine learning algorithms are effective in load forecasting, they often suffer from low data utilization, and hence their superior performance relies on massive datasets. This motivates us to design machine learning algorithms with improved data utilization. Specifically, we consider the load forecasting for a new user in the system by observing only few shots (data points) of its energy consumption. This task is challenging since the limited samples are insufficient to exploit the temporal characteristics, essential for load forecasting. Nonetheless, we notice that there are not too many temporal characteristics for residential loads due to the limited kinds of human lifestyle. Hence, we propose to utilize the historical load profile data from existing users to conduct effective clustering, which mitigates the challenges brought by the limited samples. Specifically, we first design a feature extraction clustering method for categorizing historical data. Then, inheriting the prior knowledge from the clustering results, we propose a two-phase Long Short Term Memory (LSTM) model to conduct load forecasting for new users. The proposed method outperforms the traditional LSTM model, especially when the training sample size fails to cover a whole period (i.e., 24 hours in our task). Extensive case studies on two real-world datasets and one synthetic dataset verify the effectiveness and efficiency of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qiyuan Wang (17 papers)
  2. Zhihui Chen (10 papers)
  3. Chenye Wu (22 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.