Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Importance and Utility: aTheoretical Foundation (2202.07292v1)

Published 15 Feb 2022 in cs.AI and cs.LG

Abstract: This paper provides new theory to support to the eXplainable AI (XAI) method Contextual Importance and Utility (CIU). CIU arithmetic is based on the concepts of Multi-Attribute Utility Theory, which gives CIU a solid theoretical foundation. The novel concept of contextual influence is also defined, which makes it possible to compare CIU directly with so-called additive feature attribution (AFA) methods for model-agnostic outcome explanation. One key takeaway is that the "influence" concept used by AFA methods is inadequate for outcome explanation purposes even for simple models to explain. Experiments with simple models show that explanations using contextual importance (CI) and contextual utility (CU) produce explanations where influence-based methods fail. It is also shown that CI and CU guarantees explanation faithfulness towards the explained model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Kary Främling (17 papers)
Citations (8)