Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Graph Contrastive Learning with Information Regularization (2202.06491v5)

Published 14 Feb 2022 in cs.LG

Abstract: Contrastive learning is an effective unsupervised method in graph representation learning. Recently, the data augmentation based contrastive learning method has been extended from images to graphs. However, most prior works are directly adapted from the models designed for images. Unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples, which are the key to the performance of contrastive learning models. This leaves much space for improvement over the existing graph contrastive learning frameworks. In this work, by introducing an adversarial graph view and an information regularizer, we propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL), to extract informative contrastive samples within a reasonable constraint. It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets and further improves the robustness of graph contrastive learning. The code is at https://github.com/Shengyu-Feng/ARIEL.

Citations (58)

Summary

We haven't generated a summary for this paper yet.