Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fully Decentralized Tuning-free Inexact Projection Method for P2P Energy Trading (2202.06106v1)

Published 12 Feb 2022 in eess.SY and cs.SY

Abstract: Agent-based solutions lend themselves well to address privacy concerns and the computational scalability needs of future distributed electric grids and end-use energy exchanges. Decentralized decision-making methods are the key to enabling peer-to-peer energy trading between electricity prosumers. However, the performance of existing decentralized decision-making algorithms highly depends on the algorithmic design and hyperparameter tunings, limiting applicability. This paper aims to address this gap by proposing a decentralized inexact projection method that does not rely on parameter tuning or central coordination to achieve the optimal solution for Peer-to-Peer (P2P) energy trading problems. The proposed algorithm does not require parameter readjustments, and once tuned, it converges for a wide range of P2P setups. Moreover, each prosumer only needs to share limited information (i.e., updated coupled variable) with neighboring prosumers. The IEEE 13 bus test system is used to showcase our proposed method's robustness and privacy advantages.

Summary

We haven't generated a summary for this paper yet.