Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural NID Rules (2202.06036v1)

Published 12 Feb 2022 in cs.LG and cs.AI

Abstract: Abstract object properties and their relations are deeply rooted in human common sense, allowing people to predict the dynamics of the world even in situations that are novel but governed by familiar laws of physics. Standard machine learning models in model-based reinforcement learning are inadequate to generalize in this way. Inspired by the classic framework of noisy indeterministic deictic (NID) rules, we introduce here Neural NID, a method that learns abstract object properties and relations between objects with a suitably regularized graph neural network. We validate the greater generalization capability of Neural NID on simple benchmarks specifically designed to assess the transition dynamics learned by the model.

Summary

We haven't generated a summary for this paper yet.