Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Castelnuovo-Mumford regularity of ladder determinantal varieties and patches of Grassmannian Schubert varieties (2202.03995v2)

Published 8 Feb 2022 in math.CO and math.AC

Abstract: We give degree formulas for Grothendieck polynomials indexed by vexillary permutations and $1432$-avoiding permutations via tableau combinatorics. These formulas generalize a formula for degrees of symmetric Grothendieck polynomials which appeared in previous joint work of the authors with Y. Ren and A. St. Dizier. We apply our formulas to compute Castelnuovo-Mumford regularity of classes of generalized determinantal ideals. In particular, we give combinatorial formulas for the regularities of all one-sided mixed ladder determinantal ideals. We also derive formulas for the regularities of certain Kazhdan-Lusztig ideals, including those coming from open patches of Schubert varieties in Grassmannians. This provides a correction to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri (2015).

Summary

We haven't generated a summary for this paper yet.