Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Context-Aware Discrimination Detection in Job Vacancies using Computational Language Models (2202.03907v1)

Published 2 Feb 2022 in cs.LG

Abstract: Discriminatory job vacancies are disapproved worldwide, but remain persistent. Discrimination in job vacancies can be explicit by directly referring to demographic memberships of candidates. More implicit forms of discrimination are also present that may not always be illegal but still influence the diversity of applicants. Explicit written discrimination is still present in numerous job vacancies, as was recently observed in the Netherlands. Current efforts for the detection of explicit discrimination concern the identification of job vacancies containing potentially discriminating terms such as "young" or "male". However, automatic detection is inefficient due to low precision: e.g. "we are a young company" or "working with mostly male patients" are phrases that contain explicit terms, while the context shows that these do not reflect discriminatory content. In this paper, we show how machine learning based computational LLMs can raise precision in the detection of explicit discrimination by identifying when the potentially discriminating terms are used in a discriminatory context. We focus on gender discrimination, which indeed suffers from low precision when filtering explicit terms. First, we created a data set for gender discrimination in job vacancies. Second, we investigated a variety of computational LLMs for discriminatory context detection. Third, we evaluated the capability of these models to detect unforeseen discriminating terms in context. The results show that machine learning based methods can detect explicit gender discrimination with high precision and help in finding new forms of discrimination. Accordingly, the proposed methods can substantially increase the effectiveness of detecting job vacancies which are highly suspected to be discriminatory. In turn, this may lower the discrimination experienced at the start of the recruitment process.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.