Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Multi-Party Privacy-Preserving Gradient Tree Boosting over Vertically Partitioned Dataset with Outsourced Computations (2202.03245v1)

Published 7 Feb 2022 in cs.CR

Abstract: Due to privacy concerns, multi-party gradient tree boosting algorithms have become widely popular amongst machine learning researchers and practitioners. However, limited existing works have focused on vertically partitioned datasets, and the few existing works are either not scalable or tend to leak information. Thus, in this work, we propose SSXGB which is a scalable and secure multi-party gradient tree boosting framework for vertically partitioned datasets with partially outsourced computations. Specifically, we employ an additive homomorphic encryption (HE) scheme for security. We design two sub-protocols based on the HE scheme to perform non-linear operations associated with gradient tree boosting algorithms. Next, we propose a secure training and a secure prediction algorithms under the SSXGB framework. Then we provide theoretical security and communication analysis for the proposed framework. Finally, we evaluate the performance of the framework with experiments using two real-world datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.