Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Effects of Parametric and Non-Parametric Methods on High Dimensional Sparse Matrix Representations (2202.02894v1)

Published 7 Feb 2022 in cs.LG

Abstract: The semantics are derived from textual data that provide representations for Machine Learning algorithms. These representations are interpretable form of high dimensional sparse matrix that are given as an input to the machine learning algorithms. Since learning methods are broadly classified as parametric and non-parametric learning methods, in this paper we provide the effects of these type of algorithms on the high dimensional sparse matrix representations. In order to derive the representations from the text data, we have considered TF-IDF representation with valid reason in the paper. We have formed representations of 50, 100, 500, 1000 and 5000 dimensions respectively over which we have performed classification using Linear Discriminant Analysis and Naive Bayes as parametric learning method, Decision Tree and Support Vector Machines as non-parametric learning method. We have later provided the metrics on every single dimension of the representation and effect of every single algorithm detailed in this paper.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.