Multilingual Hate Speech and Offensive Content Detection using Modified Cross-entropy Loss
Abstract: The number of increased social media users has led to a lot of people misusing these platforms to spread offensive content and use hate speech. Manual tracking the vast amount of posts is impractical so it is necessary to devise automated methods to identify them quickly. LLMs are trained on a lot of data and they also make use of contextual embeddings. We fine-tune the LLMs to help in our task. The data is also quite unbalanced; so we used a modified cross-entropy loss to tackle the issue. We observed that using a model which is fine-tuned in hindi corpora performs better. Our team (HNLP) achieved the macro F1-scores of 0.808, 0.639 in English Subtask A and English Subtask B respectively. For Hindi Subtask A, Hindi Subtask B our team achieved macro F1-scores of 0.737, 0.443 respectively in HASOC 2021.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.