Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LST: Lexicon-Guided Self-Training for Few-Shot Text Classification (2202.02566v1)

Published 5 Feb 2022 in cs.CL

Abstract: Self-training provides an effective means of using an extremely small amount of labeled data to create pseudo-labels for unlabeled data. Many state-of-the-art self-training approaches hinge on different regularization methods to prevent overfitting and improve generalization. Yet they still rely heavily on predictions initially trained with the limited labeled data as pseudo-labels and are likely to put overconfident label belief on erroneous classes depending on the first prediction. To tackle this issue in text classification, we introduce LST, a simple self-training method that uses a lexicon to guide the pseudo-labeling mechanism in a linguistically-enriched manner. We consistently refine the lexicon by predicting confidence of the unseen data to teach pseudo-labels better in the training iterations. We demonstrate that this simple yet well-crafted lexical knowledge achieves 1.0-2.0% better performance on 30 labeled samples per class for five benchmark datasets than the current state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hazel Kim (5 papers)
  2. Jaeman Son (2 papers)
  3. Yo-Sub Han (23 papers)
Citations (3)