Papers
Topics
Authors
Recent
2000 character limit reached

CGiS-Net: Aggregating Colour, Geometry and Implicit Semantic Features for Indoor Place Recognition

Published 4 Feb 2022 in cs.CV | (2202.02070v2)

Abstract: We describe a novel approach to indoor place recognition from RGB point clouds based on aggregating low-level colour and geometry features with high-level implicit semantic features. It uses a 2-stage deep learning framework, in which the first stage is trained for the auxiliary task of semantic segmentation and the second stage uses features from layers in the first stage to generate discriminate descriptors for place recognition. The auxiliary task encourages the features to be semantically meaningful, hence aggregating the geometry and colour in the RGB point cloud data with implicit semantic information. We use an indoor place recognition dataset derived from the ScanNet dataset for training and evaluation, with a test set comprising 3,608 point clouds generated from 100 different rooms. Comparison with a traditional feature-based method and four state-of-the-art deep learning methods demonstrate that our approach significantly outperforms all five methods, achieving, for example, a top-3 average recall rate of 75% compared with 41% for the closest rival method. Our code is available at: https://github.com/YuhangMing/Semantic-Indoor-Place-Recognition

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.