Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CGiS-Net: Aggregating Colour, Geometry and Implicit Semantic Features for Indoor Place Recognition (2202.02070v2)

Published 4 Feb 2022 in cs.CV

Abstract: We describe a novel approach to indoor place recognition from RGB point clouds based on aggregating low-level colour and geometry features with high-level implicit semantic features. It uses a 2-stage deep learning framework, in which the first stage is trained for the auxiliary task of semantic segmentation and the second stage uses features from layers in the first stage to generate discriminate descriptors for place recognition. The auxiliary task encourages the features to be semantically meaningful, hence aggregating the geometry and colour in the RGB point cloud data with implicit semantic information. We use an indoor place recognition dataset derived from the ScanNet dataset for training and evaluation, with a test set comprising 3,608 point clouds generated from 100 different rooms. Comparison with a traditional feature-based method and four state-of-the-art deep learning methods demonstrate that our approach significantly outperforms all five methods, achieving, for example, a top-3 average recall rate of 75% compared with 41% for the closest rival method. Our code is available at: https://github.com/YuhangMing/Semantic-Indoor-Place-Recognition

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com