Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Recommender System Based on a Double Feature Allocation Model (2202.01163v1)

Published 2 Feb 2022 in stat.ME

Abstract: A collaborative filtering recommender system predicts user preferences by discovering common features among users and items. We implement such inference using a Bayesian double feature allocation model, that is, a model for random pairs of subsets. We use an Indian buffet process (IBP) to link users and items to features. Here a feature is a subset of users and a matching subset of items. By training feature-specific rating effects, we predict ratings. We use MovieLens Data to demonstrate posterior inference in the model and prediction of user preferences for unseen items compared to items they have previously rated. Part of the implementation is a novel semi-consensus Monte Carlo method to accomodate large numbers of users and items, as is typical for related applications. The proposed approach implements parallel posterior sampling in multiple shards of users while sharing item-related global parameters across shards.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube