Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating DNN Training with Structured Data Gradient Pruning (2202.00774v1)

Published 1 Feb 2022 in cs.LG and cs.CV

Abstract: Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by reducing the number of model parameters over the course of training. However, most weight pruning techniques generally does not speed up DNN training and can even require more iterations to reach model convergence. In this work, we propose a novel Structured Data Gradient Pruning (SDGP) method that can speed up training without impacting model convergence. This approach enforces a specific sparsity structure, where only N out of every M elements in a matrix can be nonzero, making it amenable to hardware acceleration. Modern accelerators such as the Nvidia A100 GPU support this type of structured sparsity for 2 nonzeros per 4 elements in a reduction. Assuming hardware support for 2:4 sparsity, our approach can achieve a 15-25\% reduction in total training time without significant impact to performance. Source code and pre-trained models are available at \url{https://github.com/BradMcDanel/sdgp}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bradley McDanel (14 papers)
  2. Helia Dinh (1 paper)
  3. John Magallanes (1 paper)
Citations (6)