Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADG-Pose: Automated Dataset Generation for Real-World Human Pose Estimation (2202.00753v2)

Published 1 Feb 2022 in cs.CV, cs.LG, and eess.IV

Abstract: Recent advancements in computer vision have seen a rise in the prominence of applications using neural networks to understand human poses. However, while accuracy has been steadily increasing on State-of-the-Art datasets, these datasets often do not address the challenges seen in real-world applications. These challenges are dealing with people distant from the camera, people in crowds, and heavily occluded people. As a result, many real-world applications have trained on data that does not reflect the data present in deployment, leading to significant underperformance. This article presents ADG-Pose, a method for automatically generating datasets for real-world human pose estimation. These datasets can be customized to determine person distances, crowdedness, and occlusion distributions. Models trained with our method are able to perform in the presence of these challenges where those trained on other datasets fail. Using ADG-Pose, end-to-end accuracy for real-world skeleton-based action recognition sees a 20% increase on scenes with moderate distance and occlusion levels, and a 4X increase on distant scenes where other models failed to perform better than random.

Citations (3)

Summary

We haven't generated a summary for this paper yet.