Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Signal Reconstruction with QUBO Formulation in l0-regularized Linear Regression (2202.00452v2)

Published 31 Jan 2022 in cs.IT and math.IT

Abstract: An l0-regularized linear regression for a sparse signal reconstruction is implemented based on the quadratic unconstrained binary optimization (QUBO) formulation. In this method, the signal values are quantized and expressed as bit sequences. By transforming l0-norm to a quadratic form of these bits, the fully quadratic objective function is provided and optimized by the solver specialized for QUBO, such as the quantum annealer. Numerical experiments with a commercial quantum annealer show that the proposed method performs slightly better than conventional methods based on orthogonal matching pursuit (OMP) and the least absolute shrinkage and selection operator (LASSO) under several limited conditions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.