Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery (2202.00161v3)

Published 1 Feb 2022 in cs.LG and cs.AI

Abstract: We introduce Contrastive Intrinsic Control (CIC), an algorithm for unsupervised skill discovery that maximizes the mutual information between state-transitions and latent skill vectors. CIC utilizes contrastive learning between state-transitions and skills to learn behavior embeddings and maximizes the entropy of these embeddings as an intrinsic reward to encourage behavioral diversity. We evaluate our algorithm on the Unsupervised Reinforcement Learning Benchmark, which consists of a long reward-free pre-training phase followed by a short adaptation phase to downstream tasks with extrinsic rewards. CIC substantially improves over prior methods in terms of adaptation efficiency, outperforming prior unsupervised skill discovery methods by 1.79x and the next leading overall exploration algorithm by 1.18x.

Citations (59)

Summary

We haven't generated a summary for this paper yet.