Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting False Rumors from Retweet Dynamics on Social Media (2201.13103v2)

Published 31 Jan 2022 in cs.SI and stat.AP

Abstract: False rumors are known to have detrimental effects on society. To prevent the spread of false rumors, social media platforms such as Twitter must detect them early. In this work, we develop a novel probabilistic mixture model that classifies true vs. false rumors based on the underlying spreading process. Specifically, our model is the first to formalize the self-exciting nature of true vs. false retweeting processes. This results in a novel mixture marked Hawkes model (MMHM). Owing to this, our model obviates the need for feature engineering; instead, it directly models the spreading process in order to make inferences of whether online rumors are incorrect. Our evaluation is based on 13,650 retweet cascades of both true. vs. false rumors from Twitter. Our model recognizes false rumors with a balanced accuracy of 64.97% and an AUC of 69.46%. It outperforms state-of-the-art baselines (both neural and feature engineering) by a considerable margin but while being fully interpretable. Our work has direct implications for practitioners: it leverages the spreading process as an implicit quality signal and, based on it, detects false content.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Christof Naumzik (5 papers)
  2. Stefan Feuerriegel (117 papers)
Citations (28)