Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Frustratingly Simple Approach for End-to-End Image Captioning (2201.12723v3)

Published 30 Jan 2022 in cs.CV and cs.CL

Abstract: Image Captioning is a fundamental task to join vision and language, concerning about cross-modal understanding and text generation. Recent years witness the emerging attention on image captioning. Most of existing works follow a traditional two-stage training paradigm. Before training the captioning models, an extra object detector is utilized to recognize the objects in the image at first. However, they require sizeable datasets with fine-grained object annotation for training the object detector, which is a daunting task. In addition, the errors of the object detectors are easy to propagate to the following captioning models, degenerating models' performance. To alleviate such defects, we propose a frustratingly simple but highly effective end-to-end image captioning framework, Visual Conditioned GPT (VC-GPT), by connecting the pre-trained visual encoder (CLIP-ViT) and language decoder (GPT2). Different from the vanilla connection method that directly inserts the cross-attention modules into GPT2, we come up with a self-ensemble cross-modal fusion mechanism that comprehensively considers both the single- and cross-modal knowledge. As a result, we do not need extra object detectors for model training. Experimental results conducted on three popular image captioning benchmarks (MSCOCO, Flickr30k and NoCaps) demonstrate that our VC-GPT achieves either the best or the second-best performance across all evaluation metrics over extensive baseline systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ziyang Luo (35 papers)
  2. Yadong Xi (10 papers)
  3. Rongsheng Zhang (36 papers)
  4. Jing Ma (136 papers)
Citations (16)