Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Characteristic matrix functions for delay differential equations with symmetry (2201.12190v1)

Published 28 Jan 2022 in math.DS

Abstract: A characteristic matrix function captures the spectral information of a bounded linear operator in a matrix-valued function. In this article, we consider a delay differential equation with one discrete time delay and assume this equation is equivariant with respect to a compact symmetry group. Under this assumption, the delay differential equation can have discrete wave solutions, i.e. periodic solutions that have a discrete group of spatio-temporal symmetries. We show that if a discrete wave solution has a period that is rationally related to the time delay, then we can determine its stability using a characteristic matrix function. The proof relies on equivariant Floquet theory and results by Kaashoek and Verduyn Lunel on characteristic matrix functions for classes of compact operators. We discuss applications of our result in the context of delayed feedback stabilization of periodic orbits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.