Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Computing delay Lyapunov matrices and H2 norms for large-scale problems (1808.08604v1)

Published 26 Aug 2018 in math.NA

Abstract: A delay Lyapunov matrix corresponding to an exponentially stable system of linear time-invariant delay differential equations can be characterized as the solution of a boundary value problem involving a matrix valued delay differential equation. This boundary value problem can be seen as a natural generalization of the classical Lyapunov matrix equation. We present a general approach for computing delay Lyapunov matrices and H2 norms for systems with multiple discrete delays, whose applicability extends towards problems where the matrices are large and sparse, and the associated positive semidefinite matrix (the ``right-hand side' for the standard Lyapunov equation), has a low rank. In contract to existing methods that are based on solving the boundary value problem directly, our method is grounded in solving standard Lyapunov equations of increased dimensions. It combines several ingredients: i) a spectral discretization of the system of delay equations, ii) a targeted similarity transformation which induces a desired structure and sparsity pattern and, at the same time, favors accurate low rank solutions of the corresponding Lyapunov equation, and iii) a Krylov method for large-scale matrix Lyapunov equations. The structure of the problem is exploited in such a way that the final algorithm does not involve a preliminary discretization step, and provides a fully dynamic construction of approximations of increasing rank. Interpretations in terms of a projection method directly applied to a standard linear infinite-dimensional system equivalent to the original time-delay system are also given. Throughout the paper two didactic examples are used to illustrate the properties of the problem, the challenges and methodological choices, while numerical experiments are presented at the end to illustrate the effectiveness of the algorithm.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.