Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatically adapting the number of state particles in SMC$^2$ (2201.11354v2)

Published 27 Jan 2022 in stat.CO and stat.ME

Abstract: Sequential Monte Carlo squared (SMC$2$) methods can be used for parameter inference of intractable likelihood state-space models. These methods replace the likelihood with an unbiased particle filter estimator, similarly to particle Markov chain Monte Carlo (MCMC). As with particle MCMC, the efficiency of SMC$2$ greatly depends on the variance of the likelihood estimator, and therefore on the number of state particles used within the particle filter. We introduce novel methods to adaptively select the number of state particles within SMC$2$ using the expected squared jumping distance to trigger the adaptation, and modifying the exchange importance sampling method of \citet{Chopin2012a} to replace the current set of state particles with the new set of state particles. The resulting algorithm is fully automatic, and can significantly improve current methods. Code for our methods is available at https://github.com/imkebotha/adaptive-exact-approximate-smc.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.