Bootstrap inference for fixed-effect models (2201.11156v1)
Abstract: The maximum-likelihood estimator of nonlinear panel data models with fixed effects is consistent but asymptotically-biased under rectangular-array asymptotics. The literature has thus far concentrated its effort on devising methods to correct the maximum-likelihood estimator for its bias as a means to salvage standard inferential procedures. Instead, we show that the parametric bootstrap replicates the distribution of the (uncorrected) maximum-likelihood estimator in large samples. This justifies the use of confidence sets constructed via standard bootstrap percentile methods. No adjustment for the presence of bias needs to be made.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.