Papers
Topics
Authors
Recent
2000 character limit reached

Bicategorical type theory: semantics and syntax

Published 25 Jan 2022 in cs.LO and math.CT | (2201.10662v4)

Abstract: We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a class of structured bicategories. We start by developing the semantics, in the form of comprehension bicategories. Examples of comprehension bicategories are plentiful; we study both specific examples as well as classes of examples constructed from other data. From the notion of comprehension bicategory, we extract the syntax of bicategorical type theory, that is, judgment forms and structural inference rules. We prove soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects of our work are fully checked in the Coq proof assistant, based on the UniMath library.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.