Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Syntax and Semantics of Linear Dependent Types (1405.0033v4)

Published 30 Apr 2014 in cs.LO, cs.PL, and math.CT

Abstract: A type theory is presented that combines (intuitionistic) linear types with type dependency, thus properly generalising both intuitionistic dependent type theory and full linear logic. A syntax and complete categorical semantics are developed, the latter in terms of (strict) indexed symmetric monoidal categories with comprehension. Various optional type formers are treated in a modular way. In particular, we will see that the historically much-debated multiplicative quantifiers and identity types arise naturally from categorical considerations. These new multiplicative connectives are further characterised by several identities relating them to the usual connectives from dependent type theory and linear logic. Finally, one important class of models, given by families with values in some symmetric monoidal category, is investigated in detail.

Citations (15)

Summary

We haven't generated a summary for this paper yet.