Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Method to Predict Semantic Relations on Artificial Intelligence Papers (2201.10518v1)

Published 24 Jan 2022 in cs.SI, cs.AI, and cs.LG

Abstract: Predicting the emergence of links in large evolving networks is a difficult task with many practical applications. Recently, the Science4cast competition has illustrated this challenge presenting a network of 64.000 AI concepts and asking the participants to predict which topics are going to be researched together in the future. In this paper, we present a solution to this problem based on a new family of deep learning approaches, namely Graph Neural Networks. The results of the challenge show that our solution is competitive even if we had to impose severe restrictions to obtain a computationally efficient and parsimonious model: ignoring the intrinsic dynamics of the graph and using only a small subset of the nodes surrounding a target link. Preliminary experiments presented in this paper suggest the model is learning two related, but different patterns: the absorption of a node by a sub-graph and union of more dense sub-graphs. The model seems to excel at recognizing the first type of pattern.

Summary

We haven't generated a summary for this paper yet.