Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Neural Processes Improve Graph Link Prediction (2109.14894v1)

Published 30 Sep 2021 in cs.LG and stat.ML

Abstract: Link prediction is a fundamental problem in graph data analysis. While most of the literature focuses on transductive link prediction that requires all the graph nodes and majority of links in training, inductive link prediction, which only uses a proportion of the nodes and their links in training, is a more challenging problem in various real-world applications. In this paper, we propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN), which can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph. Experiments on real-world graphs are conducted to validate our model, where the results suggest that the proposed method achieves stronger performance compared to other state-of-the-art models, and meanwhile generalizes well when training on a small subgraph.

Citations (12)

Summary

We haven't generated a summary for this paper yet.