Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformer-Based Video Front-Ends for Audio-Visual Speech Recognition for Single and Multi-Person Video (2201.10439v3)

Published 25 Jan 2022 in cs.CV, cs.LG, cs.SD, and eess.AS

Abstract: Audio-visual automatic speech recognition (AV-ASR) extends speech recognition by introducing the video modality as an additional source of information. In this work, the information contained in the motion of the speaker's mouth is used to augment the audio features. The video modality is traditionally processed with a 3D convolutional neural network (e.g. 3D version of VGG). Recently, image transformer networks arXiv:2010.11929 demonstrated the ability to extract rich visual features for image classification tasks. Here, we propose to replace the 3D convolution with a video transformer to extract visual features. We train our baselines and the proposed model on a large scale corpus of YouTube videos. The performance of our approach is evaluated on a labeled subset of YouTube videos as well as on the LRS3-TED public corpus. Our best video-only model obtains 31.4% WER on YTDEV18 and 17.0% on LRS3-TED, a 10% and 15% relative improvements over our convolutional baseline. We achieve the state of the art performance of the audio-visual recognition on the LRS3-TED after fine-tuning our model (1.6% WER). In addition, in a series of experiments on multi-person AV-ASR, we obtained an average relative reduction of 2% over our convolutional video frontend.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dmitriy Serdyuk (20 papers)
  2. Otavio Braga (8 papers)
  3. Olivier Siohan (13 papers)
Citations (34)