Papers
Topics
Authors
Recent
2000 character limit reached

AI-based Re-identification of Behavioral Clickstream Data

Published 21 Jan 2022 in cs.CR, cs.AI, econ.GN, and q-fin.EC | (2201.10351v1)

Abstract: AI-based face recognition, i.e., the re-identification of individuals within images, is an already well established technology for video surveillance, for user authentication, for tagging photos of friends, etc. This paper demonstrates that similar techniques can be applied to successfully re-identify individuals purely based on their behavioral patterns. In contrast to de-anonymization attacks based on record linkage, these methods do not require any overlap in data points between a released dataset and an identified auxiliary dataset. The mere resemblance of behavioral patterns between records is sufficient to correctly attribute behavioral data to identified individuals. Further, we can demonstrate that data perturbation does not provide protection, unless a significant share of data utility is being destroyed. These findings call for sincere cautions when sharing actual behavioral data with third parties, as modern-day privacy regulations, like the GDPR, define their scope based on the ability to re-identify. This has also strong implications for the Marketing domain, when dealing with potentially re-identify-able data sources like shopping behavior, clickstream data or cockies. We also demonstrate how synthetic data can offer a viable alternative, that is shown to be resilient against our introduced AI-based re-identification attacks.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.