Papers
Topics
Authors
Recent
2000 character limit reached

Partition-Based Active Learning for Graph Neural Networks

Published 23 Jan 2022 in cs.LG and cs.AI | (2201.09391v2)

Abstract: We study the problem of semi-supervised learning with Graph Neural Networks (GNNs) in an active learning setup. We propose GraphPart, a novel partition-based active learning approach for GNNs. GraphPart first splits the graph into disjoint partitions and then selects representative nodes within each partition to query. The proposed method is motivated by a novel analysis of the classification error under realistic smoothness assumptions over the graph and the node features. Extensive experiments on multiple benchmark datasets demonstrate that the proposed method outperforms existing active learning methods for GNNs under a wide range of annotation budget constraints. In addition, the proposed method does not introduce additional hyperparameters, which is crucial for model training, especially in the active learning setting where a labeled validation set may not be available.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.