Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Structural-Clustering Based Active Learning for Graph Neural Networks (2312.04307v1)

Published 7 Dec 2023 in cs.LG

Abstract: In active learning for graph-structured data, Graph Neural Networks (GNNs) have shown effectiveness. However, a common challenge in these applications is the underutilization of crucial structural information. To address this problem, we propose the Structural-Clustering PageRank method for improved Active learning (SPA) specifically designed for graph-structured data. SPA integrates community detection using the SCAN algorithm with the PageRank scoring method for efficient and informative sample selection. SPA prioritizes nodes that are not only informative but also central in structure. Through extensive experiments, SPA demonstrates higher accuracy and macro-F1 score over existing methods across different annotation budgets and achieves significant reductions in query time. In addition, the proposed method only adds two hyperparameters, $\epsilon$ and $\mu$ in the algorithm to finely tune the balance between structural learning and node selection. This simplicity is a key advantage in active learning scenarios, where extensive hyperparameter tuning is often impractical.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets