Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Sparse Allreduce for Distributed Deep Learning (2201.07598v2)

Published 19 Jan 2022 in cs.DC and cs.LG

Abstract: Communication overhead is one of the major obstacles to train large deep learning models at scale. Gradient sparsification is a promising technique to reduce the communication volume. However, it is very challenging to obtain real performance improvement because of (1) the difficulty of achieving an scalable and efficient sparse allreduce algorithm and (2) the sparsification overhead. This paper proposes O$k$-Top$k$, a scheme for distributed training with sparse gradients. O$k$-Top$k$ integrates a novel sparse allreduce algorithm (less than 6$k$ communication volume which is asymptotically optimal) with the decentralized parallel Stochastic Gradient Descent (SGD) optimizer, and its convergence is proved. To reduce the sparsification overhead, O$k$-Top$k$ efficiently selects the top-$k$ gradient values according to an estimated threshold. Evaluations are conducted on the Piz Daint supercomputer with neural network models from different deep learning domains. Empirical results show that O$k$-Top$k$ achieves similar model accuracy to dense allreduce. Compared with the optimized dense and the state-of-the-art sparse allreduces, O$k$-Top$k$ is more scalable and significantly improves training throughput (e.g., 3.29x-12.95x improvement for BERT on 256 GPUs).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shigang Li (25 papers)
  2. Torsten Hoefler (203 papers)
Citations (40)