Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Programmatic Policy Extraction by Iterative Local Search (2201.06863v1)

Published 18 Jan 2022 in cs.AI

Abstract: Reinforcement learning policies are often represented by neural networks, but programmatic policies are preferred in some cases because they are more interpretable, amenable to formal verification, or generalize better. While efficient algorithms for learning neural policies exist, learning programmatic policies is challenging. Combining imitation-projection and dataset aggregation with a local search heuristic, we present a simple and direct approach to extracting a programmatic policy from a pretrained neural policy. After examining our local search heuristic on a programming by example problem, we demonstrate our programmatic policy extraction method on a pendulum swing-up problem. Both when trained using a hand crafted expert policy and a learned neural policy, our method discovers simple and interpretable policies that perform almost as well as the original.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.