Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifelong Generative Learning via Knowledge Reconstruction (2201.06418v1)

Published 17 Jan 2022 in cs.LG and cs.AI

Abstract: Generative models often incur the catastrophic forgetting problem when they are used to sequentially learning multiple tasks, i.e., lifelong generative learning. Although there are some endeavors to tackle this problem, they suffer from high time-consumptions or error accumulation. In this work, we develop an efficient and effective lifelong generative model based on variational autoencoder (VAE). Unlike the generative adversarial network, VAE enjoys high efficiency in the training process, providing natural benefits with few resources. We deduce a lifelong generative model by expending the intrinsic reconstruction character of VAE to the historical knowledge retention. Further, we devise a feedback strategy about the reconstructed data to alleviate the error accumulation. Experiments on the lifelong generating tasks of MNIST, FashionMNIST, and SVHN verified the efficacy of our approach, where the results were comparable to SOTA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Libo Huang (23 papers)
  2. Zhulin An (43 papers)
  3. Xiang Zhi (2 papers)
  4. Yongjun Xu (81 papers)
Citations (2)