Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning latent representations across multiple data domains using Lifelong VAEGAN (2007.10221v1)

Published 20 Jul 2020 in cs.CV and cs.LG

Abstract: The problem of catastrophic forgetting occurs in deep learning models trained on multiple databases in a sequential manner. Recently, generative replay mechanisms (GRM), have been proposed to reproduce previously learned knowledge aiming to reduce the forgetting. However, such approaches lack an appropriate inference model and therefore can not provide latent representations of data. In this paper, we propose a novel lifelong learning approach, namely the Lifelong VAEGAN (L-VAEGAN), which not only induces a powerful generative replay network but also learns meaningful latent representations, benefiting representation learning. L-VAEGAN can allow to automatically embed the information associated with different domains into several clusters in the latent space, while also capturing semantically meaningful shared latent variables, across different data domains. The proposed model supports many downstream tasks that traditional generative replay methods can not, including interpolation and inference across different data domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fei Ye (78 papers)
  2. Adrian G. Bors (19 papers)
Citations (62)