Papers
Topics
Authors
Recent
2000 character limit reached

Hyperparameter Importance for Machine Learning Algorithms

Published 13 Jan 2022 in stat.ML and cs.LG | (2201.05132v1)

Abstract: Hyperparameter plays an essential role in the fitting of supervised machine learning algorithms. However, it is computationally expensive to tune all the tunable hyperparameters simultaneously especially for large data sets. In this paper, we give a definition of hyperparameter importance that can be estimated by subsampling procedures. According to the importance, hyperparameters can then be tuned on the entire data set more efficiently. We show theoretically that the proposed importance on subsets of data is consistent with the one on the population data under weak conditions. Numerical experiments show that the proposed importance is consistent and can save a lot of computational resources.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.