Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance of Tuning Hyperparameters of Machine Learning Algorithms (2007.07588v1)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: The performance of many machine learning algorithms depends on their hyperparameter settings. The goal of this study is to determine whether it is important to tune a hyperparameter or whether it can be safely set to a default value. We present a methodology to determine the importance of tuning a hyperparameter based on a non-inferiority test and tuning risk: the performance loss that is incurred when a hyperparameter is not tuned, but set to a default value. Because our methods require the notion of a default parameter, we present a simple procedure that can be used to determine reasonable default parameters. We apply our methods in a benchmark study using 59 datasets from OpenML. Our results show that leaving particular hyperparameters at their default value is non-inferior to tuning these hyperparameters. In some cases, leaving the hyperparameter at its default value even outperforms tuning it using a search procedure with a limited number of iterations.

Citations (89)

Summary

We haven't generated a summary for this paper yet.