Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Negativity Hamiltonian: An operator characterization of mixed-state entanglement

Published 11 Jan 2022 in cond-mat.stat-mech, hep-th, and quant-ph | (2201.03989v1)

Abstract: In the context of ground states of quantum many-body systems, the locality of entanglement between connected regions of space is directly tied to the locality of the corresponding entanglement Hamiltonian: the latter is dominated by local, few-body terms. In this work, we introduce the negativity Hamiltonian as the (non hermitian) effective Hamiltonian operator describing the logarithm of the partial transpose of a many-body system. This allows us to address the connection between entanglement and operator locality beyond the paradigm of bipartite pure systems. As a first step in this direction, we study the structure of the negativity Hamiltonian for fermionic conformal field theories and a free fermion chain: in both cases, we show that the negativity Hamiltonian assumes a quasi-local functional form, that is captured by simple functional relations.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.