Papers
Topics
Authors
Recent
2000 character limit reached

Active Reinforcement Learning -- A Roadmap Towards Curious Classifier Systems for Self-Adaptation

Published 11 Jan 2022 in cs.LG | (2201.03947v1)

Abstract: Intelligent systems have the ability to improve their behaviour over time taking observations, experiences or explicit feedback into account. Traditional approaches separate the learning problem and make isolated use of techniques from different field of machine learning such as reinforcement learning, active learning, anomaly detection or transfer learning, for instance. In this context, the fundamental reinforcement learning approaches come with several drawbacks that hinder their application to real-world systems: trial-and-error, purely reactive behaviour or isolated problem handling. The idea of this article is to present a concept for alleviating these drawbacks by setting up a research agenda towards what we call "active reinforcement learning" in intelligent systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.