Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neuro-evolutionary Frameworks for Generalized Learning Agents (2002.01088v1)

Published 4 Feb 2020 in cs.AI

Abstract: The recent successes of deep learning and deep reinforcement learning have firmly established their statuses as state-of-the-art artificial learning techniques. However, longstanding drawbacks of these approaches, such as their poor sample efficiencies and limited generalization capabilities point to a need for re-thinking the way such systems are designed and deployed. In this paper, we emphasize how the use of these learning systems, in conjunction with a specific variation of evolutionary algorithms could lead to the emergence of unique characteristics such as the automated acquisition of a variety of desirable behaviors and useful sets of behavior priors. This could pave the way for learning to occur in a generalized and continual manner, with minimal interactions with the environment. We discuss the anticipated improvements from such neuro-evolutionary frameworks, along with the associated challenges, as well as its potential for application to a number of research areas.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.