Papers
Topics
Authors
Recent
2000 character limit reached

Degenerating hyperbolic surfaces and spectral gaps for large genus

Published 9 Jan 2022 in math.DG and math.AP | (2201.03056v3)

Abstract: In this article we study the differences of two consecutive eigenvalues $\lambda_{i}-\lambda_{i-1}$ up to $i=2g-2$ for the Laplacian on hyperbolic surfaces of genus $g$, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least $\frac{1}{4}$ as genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.