Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Benjamini-Schramm convergence and spectrum of random hyperbolic surfaces of high genus (2002.00869v2)

Published 3 Feb 2020 in math.PR and math.SP

Abstract: We study geometric and spectral properties of typical hyperbolic surfaces of high genus, excluding a set of small measure for the Weil-Petersson probability measure. We first prove Benjamini-Schramm convergence to the hyperbolic plane H as the genus g goes to infinity. An estimate for the number of eigenvalues in an interval [a,b] in terms of a, b and g is then proven using the Selberg trace formula. It implies the convergence of spectral measures to the spectral measure of H as g $\rightarrow$+$\infty$, and a uniform Weyl law as b $\rightarrow$+$\infty$. We deduce a bound on the number of small eigenvalues, and the multiplicity of any eigenvalue.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)