Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-attention based anchor proposal for skeleton-based action recognition (2112.09413v1)

Published 17 Dec 2021 in cs.CV and cs.MM

Abstract: Skeleton sequences are widely used for action recognition task due to its lightweight and compact characteristics. Recent graph convolutional network (GCN) approaches have achieved great success for skeleton-based action recognition since its grateful modeling ability of non-Euclidean data. GCN is able to utilize the short-range joint dependencies while lack to directly model the distant joints relations that are vital to distinguishing various actions. Thus, many GCN approaches try to employ hierarchical mechanism to aggregate wider-range neighborhood information. We propose a novel self-attention based skeleton-anchor proposal (SAP) module to comprehensively model the internal relations of a human body for motion feature learning. The proposed SAP module aims to explore inherent relationship within human body using a triplet representation via encoding high order angle information rather than the fixed pair-wise bone connection used in the existing hierarchical GCN approaches. A Self-attention based anchor selection method is designed in the proposed SAP module for extracting the root point of encoding angular information. By coupling proposed SAP module with popular spatial-temporal graph neural networks, e.g. MSG3D, it achieves new state-of-the-art accuracy on challenging benchmark datasets. Further ablation study have shown the effectiveness of our proposed SAP module, which is able to obviously improve the performance of many popular skeleton-based action recognition methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.