Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cinderella's shoe won't fit Soundarya: An audit of facial processing tools on Indian faces (2112.09326v1)

Published 17 Dec 2021 in cs.CV and cs.CY

Abstract: The increasing adoption of facial processing systems in India is fraught with concerns of privacy, transparency, accountability, and missing procedural safeguards. At the same time, we also know very little about how these technologies perform on the diverse features, characteristics, and skin tones of India's 1.34 billion-plus population. In this paper, we test the face detection and facial analysis functions of four commercial facial processing tools on a dataset of Indian faces. The tools display varying error rates in the face detection and gender and age classification functions. The gender classification error rate for Indian female faces is consistently higher compared to that of males -- the highest female error rate being 14.68%. In some cases, this error rate is much higher than that shown by previous studies for females of other nationalities. Age classification errors are also high. Despite taking into account an acceptable error margin of plus or minus 10 years from a person's actual age, age prediction failures are in the range of 14.3% to 42.2%. These findings point to the limited accuracy of facial processing tools, particularly for certain demographic groups, and the need for more critical thinking before adopting such systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.