Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-view Graph Neural Networks for Knowledge Graph Completion (2112.09231v4)

Published 16 Dec 2021 in cs.CL, cs.AI, and cs.LG

Abstract: We present an effective graph neural network (GNN)-based knowledge graph embedding model, which we name WGE, to capture entity- and relation-focused graph structures. Given a knowledge graph, WGE builds a single undirected entity-focused graph that views entities as nodes. WGE also constructs another single undirected graph from relation-focused constraints, which views entities and relations as nodes. WGE then proposes a GNN-based architecture to better learn vector representations of entities and relations from these two single entity- and relation-focused graphs. WGE feeds the learned entity and relation representations into a weighted score function to return the triple scores for knowledge graph completion. Experimental results show that WGE outperforms strong baselines on seven benchmark datasets for knowledge graph completion.

Citations (3)

Summary

We haven't generated a summary for this paper yet.