Papers
Topics
Authors
Recent
2000 character limit reached

Sage: Leveraging ML to Diagnose Unpredictable Performance in Cloud Microservices

Published 12 Dec 2021 in cs.DC | (2112.06263v1)

Abstract: Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.