A note on stability properties of powers of polymatroidal ideals (2112.05918v2)
Abstract: Let $I$ be a matroidal ideal of degrre $d$ of a polynomial ring $R=K[x_1,...,x_n]$, where $K$ is a field. Let astab$(I)$ and dstab$(I)$ be the smallest integer $n$ for which Ass$(In)$ and depth$(In)$ stabilize, respectively. In this paper, we show that astab$(I)=1$ if and only if dstab$(I)=1$. Moreover, we prove that if $d=3$, then ${\rm astab}(I)={\rm dstab}(I)$. Furthermore, we show that if $I$ is an almost square-free Veronese type ideal of degree $d$, then ${\rm astab}(I)={\rm dstab}(I)=\lceil\frac{n-1}{n-d}\rceil$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.