On stability properties of powers of polymatroidal ideals (1803.00730v2)
Abstract: Let $R=K[x_1,...,x_n]$ be the polynomial ring in $n$ variables over a field $K$ with the maximal ideal $\frak{m}=(x_1,...,x_n)$. Let $\astab(I)$ and $\dstab(I)$ be the smallest integer $n$ for which $\Ass(In)$ and $\depth(In)$ stabilize, respectively. In this paper we show that $\astab(I)=\dstab(I)$ in the following cases: \begin{itemize} \item[(i)] $I$ is a matroidal ideal and $n\leq 5$. \item[(ii)] $I$ is a polymatroidal ideal, $n=4$ and $\frak{m}\notin\Ass{\infty}(I)$, where $\Ass{\infty}(I)$ is the stable set of associated prime ideals of $I$. \item[(iii)] $I$ is a polymatroidal ideal of degree $2$. \end{itemize} Moreover, we give an example of a polymatroidal ideal for which $\astab(I)\neq\dstab(I)$. This is a counterexample to the conjecture of Herzog and Qureshi, according to which these two numbers are the same for polymatroidal ideals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.