Papers
Topics
Authors
Recent
2000 character limit reached

Learning Personal Representations from fMRIby Predicting Neurofeedback Performance

Published 6 Dec 2021 in cs.LG, cs.CV, and eess.IV | (2112.04902v1)

Abstract: We present a deep neural network method for learning a personal representation for individuals that are performing a self neuromodulation task, guided by functional MRI (fMRI). This neurofeedback task (watch vs. regulate) provides the subjects with a continuous feedback contingent on down regulation of their Amygdala signal and the learning algorithm focuses on this region's time-course of activity. The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation. It is shown that the individuals' representation improves the next-frame prediction considerably. Moreover, this personal representation, learned solely from fMRI images, yields good performance in linear prediction of psychiatric traits, which is better than performing such a prediction based on clinical data and personality tests. Our code is attached as supplementary and the data would be shared subject to ethical approvals.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.